William Buckland y los fósiles

William Buckland y los fósiles

Buckland

Dibujo humorístico de la época (hacia 1822) de Buckland en la cueva de las hienas en Kirkdale (Lo que en realidad se encontró ahí fueron huesos fosilizados de hienas y otros animales extintos en Inglaterra)

En un día como hoy (12 de marzo), pero de 1784, nació en Devon, Inglaterra, William Buckland, famoso teólogo y naturalista británico del siglo xix.

El capítulo vi de las Crónicas de la extinción incluye la historia  de los fósiles de la cueva de Kirkdale y de cómo Buckland creyó, en un principio, que esos restos de animales extintos constituían una prueba de la veracidad de la épica del diluvio universal del Génesis.  Los huesos de elefantes, hipopótamos, osos de de las cavernas y gigantescos cérvidos que estaban dispersos en el suelo de la caverna eran, pensó Buckland, restos de animales que habían sido arrastrados por las aguas del gran diluvio.

William_Buckland_c1845

William Buckland (1784 – 1856)

Buckland, sin embargo, pronto cambió de opinión. Los huesos de Kirkdale no podían haber sido arrastrados a la cueva, porque la única entrada a ella era un pequeño hueco por el que era físicamente imposible que el cuerpo de un hipopótamo pudiera haber pasado. Buckland dedujo entonces que la cueva había sido en realidad una guarida de hienas pleistocenas (otros animales ya extintos en Inglaterra), y que la acumulación de huesos ahí se debía a la actividad de esos animales y no a la acción de las aguas de un diluvio.
[El capítulo vi de las Crónicas de la extinción provee más detalles del razonamiento de Buckland]

Buckland fue también el primer naturalista en otorgar un nombre científico a una especie de dinosaurio. En 1824 publicó un ensayo en el que describió los huesos fósiles de un gigantesco reptil, al que asignó el nombre de Megalosaurus (lagarto enorme). Este animal, junto con Hylaeosaurus e Iguanodon, fueron los primeros en ser identificados por Richard Owen, en 1842, como miembros de un grupo separado de reptiles, a los que se les llamó dinosaurios (“lagartos terribles”).

William Buckland se casó en 1825 con Mary Morland, una talentosa ilustradora y estudiosa de los fósiles. Como en muchos otros casos de injusticia histórica, las contribuciones de Mary Buckland rara vez son discutidas en los numerosos estudios biográficos sobre William, en los que ella aparece simplemente como Mrs. Buckland, si es que se le menciona.

Buckland_family_silhouette

La familia Buckland (William, Mary y su hijo Frank) con sus fósiles. (Ilustración de Mary Buckland publicada en la biografía de W. Buckland escrita por Elizabeth Gordon en 1894; vía Wikimedia Commons)

Anuncios

Los ojos de anomalocaris

anomalocaris

Anomalocaris. Reconstrucción por Katrina Kenny, Universidad de Adelaide

Anomalocaris es un enigmático animal extinto que habitó los mares del Cámbrico, hace poco más de quinientos millones de años. Su nombre significa “camarón anómalo, o anormal” y le fue impuesto precisamente por su extraño aspecto. Con poco más de un metro de largo, una de las especies de anomalocaris fue el organismo más grande que se conoce de su tiempo, y se piensa que se trataba de un depredador que se alimentaba de trilobites y otros organismos de la fauna del Cámbrico.

En la década de los ochenta, Stephen Jay Gould y algunos otros prominentes paleobiólogos llegaron a pensar que Anomalocaris pertenecía a un grupo de especies (un phylum o filo) que se había extinguido, porque no parecía encajar bien en ninguno de los filos tradicionales. Sin embargo, poco a poco comenzó a acumularse evidencia que sugería que los anomalocaris y otros extraños organismos marinos del Cámbrico eran parientes de los artrópodos, o incluso miembros de este filo.

En 2011 se informó sobre el descubrimiento de unos fósiles de Anomalocaris en los que se había preservado con gran detalle la estructura de los enormes ojos que tenían estos animales. El análisis del material mostró que se trataba de verdaderos ojos compuestos, como los que poseen los artrópodos. Más aun, resultó que se trataba de ojos de gran complejidad, formado cada uno por al menos dieciséis mil celdillas, o lentes, individuales. Esto muestra que la capacidad visual de Anomalocaris debió haber sido al menos tan fina como la de algunos insectos de hoy en día, como las libélulas.

anomalocariseyes

Este descubrimiento no sólo corroboró el hecho de que Anomalocaris perteneció a la misma línea evolutiva que los artrópodos, sino que además demostró que el ojo compuesto apareció en una fase temprana de la evolución de ese grupo y que desde hace más de quinientos millones de años ya existían versiones muy sofisticadas de ese órgano.

Existe ya consenso en que Anomalocaris y otros extraños habitantes de los mares cámbricos, como Opabinia,  pueden clasificarse como artrópodos o al menos como un grupo muy cercano a ellos. En contra de lo que pensaba Gould, los anomalocaris no formaban parte de un filo desaparecido; al contrario, pertenecieron al linaje evolutivo más exitoso, al menos en número de especies, en la historia de la vida en la tierra.

Referencias

  • Paterson, J. R., García-Bellido, D. C., Lee, M. S., Brock, G. A., Jago, J. B., & Edgecombe, G. D. (2011). Acute vision in the giant Cambrian predator Anomalocaris and the origin of compound eyes. Nature, 480: 237-240.
  • Ver también el capítulo III de Crónicas de la extinción y esta página sobre Anomalocaris
Obamadon y la extinción K – Pg

Obamadon y la extinción K – Pg

obama-oficial

Fotografía oficial de Barack Obama 2012

En un par de días, Barack Obama terminará su periodo como el cuadragésimo cuarto presidente de los Estados Unidos de América. Mucho tiempo atrás, hace sesenta y seis millones de años, llegó al final de su existencia una especie de reptil cuyo nombre científico, Obamadon gracilis, hace honor al presidente saliente.

En 2012, Nicholas Longrich y sus colaboradores examinaron una serie de fósiles de reptiles escamados (lagartijas y serpientes) provenientes de depósitos de finales del periodo cretácico de Norteamérica. Los investigadores encontraron varias especies hasta entonces desconocidas, entre las que se encontraba un lagarto de unos treinta centímetros de largo, cuya dentadura —sólida, limpia y de gran tamaño— les recordó la del sonriente presidente Obama. No dudaron en acuñar el nombre genérico Obamadon para el animal, ni para agregar el epíteto gracilis —que significa delgado, fino o sencillo en latín— como nombre específico.

obamadon

Lagartijas del Cretácico. Obamadon es la de enfrente. Carl Buell, Universidad de Yale

El estudio de Longrich y sus colaboradores mostró que las lagartijas y serpientes formaban un grupo muy diverso durante el Cretácico (entre 145 y 66 millones de años en el pasado), por lo que puede inferirse que coexistieron exitosamente con sus parientes evolutivos, los dinosaurios. Como se detalla en el episodio iv de las Crónicas de la extinción, al final de ese periodo se extinguió la gran mayoría de las especies de dinosaurios, sobreviviendo sólo un pequeño grupo de ellos que millones de años después se diversificó para dar origen a las aves modernas.

Longrich y sus colegas hallaron que la fauna de escamados del Cretácico sufrió también pérdidas importantes durante el evento de extinción K-Pg —que es el nombre técnico para lo que se conoce popularmente como «la extinción de los dinosaurios»—. De las treinta especies que identificaron en los depósitos del Cretácico (K), sólo cinco aparecen también en los estratos del Paleógeno (Pg), que es la división geológica inmediatamente posterior al periodo cretácico. Esto quiere decir que el resto de las especies, que representan un 83% del total, se extinguieron durante el evento K-Pg. Obamadon fue una de esas víctimas.

El patrón que encontró el equipo de Longrich es similar al de otros grupos de animales que como conjunto sobrevivieron al evento K-Pg, pero que perdieron porcentajes importantes de sus especies. Se calcula, por ejemplo, que de los tiburones y los mamíferos que existían a finales del Cretácico se extinguió más del 70% de las especies. En la mayoría de los grupos las especies más vulnerables a la extinción fueron las de mayor tamaño, como Omabadon entre las lagartijas y, por supuesto, los dinosaurios no aviares.

La extinción masiva del final del Cretácico se desencadenó muy probablemente como consecuencia del choque contra la Tierra de un asteroide, el mismo que dejó como huella el cráter de casi doscientos kilómetros cuyo centro se encuentra cerca del pueblo de Chicxulub, en la Península de Yucatán. La gigantesca explosión que se produjo y los violentos fenómenos asociados —terremotos, tsunamis, fuegos, caída de material incandescente, entre otros— seguramente causaron la extinción inmediata de un buen número de especies.

Sin embargo, fueron los cambios ambientales a largo plazo los que llevaron a la extinción a la mayoría de las especies. En particular, se piensa que el material que se inyectó en la atmósfera tras la explosión del asteroide provocó cambios drásticos en el clima y prácticamente detuvo la fotosíntesis a nivel planetario. Un estudio reciente, de Julia Brugger y sus colaboradores, propone que los aerosoles sulfatados podrían haber provocado una caída de la temperatura global promedio de más de 26 grados Celsius, y que estos efectos podrían haber tardado cerca de treinta años en revertirse. El destino de Obamadon y de miles o millones de otras especies podría haber sido sellado por un final gélido.

El 20 de enero de 2017 comenzará para Estados Unidos y para el mundo un periodo que podría ser catastrófico. Si los parientes evolutivos de Obamadon que sobrevivieron al evento K-Pg pudieron recuperar su esplendor luego del mayor cataclismo en la historia del planeta, ¿podremos nosotros sortear los años oscuros que se avecinan?

Referencias

Brugger, J., Feulner, G. y Petri, S. (2017) Baby, it’s cold outside: Climate model simulations of the effects of the asteroid impact at the end of the Cretaceous. Geophysical Research Letters, en prensa.

Longrich, N. R., Bhullar, B.-A. S. y Gauthier, J. A. (2012) Mass extinction of lizards and snakes at the Cretaceous–Paleogene boundary. Proceedings of the National Academy of Sciences, 109, 21396-21401.

 

¿Se puede reconstruir un mamut?

Hwang Woo-Suk (izquierda) y Vasily Vasiliev (derecha)

Esta semana se anunció un proyecto cuyo producto final sería un mamut clonado. Según los reportes de prensa, Vasily Vasiliev, vicerrector de la Universidad Federal del Noreste de la república rusa de Sajá (Yakutia), firmó un contrato con el investigador sudcoreano Hwang Woo-Suk, de la Fundación Sooam de Biotecnología para intentar insertar el núcleo de una célula de mamut en el óvulo de una elefanta asiática con el propósito de generar lo que sería el primer embrión de mamut vivo en miles de años. Las células podrían en principio ser recuperadas de fragmentos de médula ósea de huesos de mamut preservados en el hielo perpetuo de la tundra siberiana. [Ver por ejemplo nota en El Universal de México].

Aunque los pasos planteados son en teoría realizables (si es que en verdad los investigadores pueden recuperar células viables en la médula congelada por miles de años), existen obstáculos técnicos muy importantes que hacen dudar a los científicos serios de la viabilidad del proyecto. Las dudas se acrecientan al recordar que Hwang es el controvertido investigador que en 2005 anunció la supuesta clonación de un ser humano y que en 2006 fue despedido de la Universidad Estatal de Seúl por usar datos falsos en sus artículos de investigación sobre células madre.

En este blog he discutido el tema de la posible reconstrucción de especies y subespecies extintas por clonación o por cruzamiento selectivo de individuos. Reproduzco a continuación una nota publicada en La Jornada Michoacán el 8 de diciembre de 2008 sobre la posible reconstrucción de un mamut lanudo. Hay que aclarar que la nota de 2008 se refiere a la reconstrucción del animal a partir del genoma, un proceso en principio mucho más complicado que el que se plantea en el nuevo proyecto ruso-coreano.

Ilustración de Friedrich Wilhelm Kuhnert (1865 - 1926)

¿Se puede reconstruir un mamut?
Héctor T. Arita
La Jornada Michoacán, 8 de diciembre de 2008 

El 20 de noviembre pasado, la revista Nature publicó un artículo de un equipo de científicos estadunidenses y rusos que logró reconstruir un porcentaje importante del acervo genético del mamut lanudo. El grupo, encabezado por Webb Miller, de la Universidad Estatal de Pensilvania, obtuvo el material genético a partir de pelos de ejemplares preservados en los hielos perpetuos de Siberia por más de 20 mil años. Según el estudio, la secuencia de más de 4 mil millones de unidades de información representa alrededor de 80 por ciento del genoma del mamut, una especie que se extinguió hace miles de años.

El mamut lanudo habitó el norte de Eurasia y del Continente Americano durante buena parte del Pleistoceno. Todos hemos visto reconstrucciones de este imponente animal, con sus enormes “colmillos” (que eran en realidad incisivos) y su largo pelambre de color pardo rojizo. El mamut lanudo coexistió con grupos humanos en varias partes del mundo, como lo atestiguan las pinturas rupestres y los restos de instrumentos hallados junto a algunos fósiles de estos paquidermos. Varias generaciones de mexicanos han visto en los libros de texto la recreación, en gran parte fantasiosa, de la caza de un mamut por un grupo de hombres exageradamente primitivos en los antiguos pantanos de Texcoco. Lo cierto es que los fósiles de mamut son relativamente comunes en la mayor parte del territorio mexicano. Casi todas las poblaciones del mamut lanudo desaparecieron hace más de 10 mil años, aunque algunos grupos persistieron en pequeñas islas hasta hace apenas 4 mil años.

Royal British Columbia Museum

Aparte del reto técnico que representa la reconstrucción del genoma de una especie extinta, el estudio el grupo ruso-estadunidense abre posibilidades de gran relevancia para la comprensión de la biología, ecología y evolución de los mamuts y sus parientes cercanos, los elefantes. El acervo genético del mamut lanudo difiere del genoma del elefante africano en apenas 0.6 por ciento, menos de la mitad de la diferencia que existe entre el ser humano y el chimpancé. La diferencia debe ser aún menor con el elefante asiático, que es un pariente más cercano del mamut, pero del que no se tiene información genética suficiente.

Otro estudio genético, publicado a mediados de año, demostró con otro tipo de técnicas que es posible distinguir dos tipos o variedades de mamut lanudo que coexistieron por miles de años en lo que ahora es Siberia. La diferencia genética entre estos dos tipos de mamut es significativa, mayor que la que existe entre el ser humano moderno y los neandertales. Los autores del estudio no se atrevieron a proponer la existencia de dos especies diferentes, ya que la evidencia morfológica basada en restos fósiles es insuficiente. Aún así, el estudio muestra el alto nivel de variación que existía entre las poblaciones de los mamuts en el Pleistoceno.

La publicación del genoma del mamut generó especulaciones sobre la posibilidad de reconstruir un ejemplar con base en la información genética descifrada. No deja de ser irónico que la publicación del estudio se diera a los pocos días de la muerte de Michael Crichton, quien en Parque Jurásico imaginó la clonación de dinosaurios a partir de material genético preservado en ámbar por más de 70 millones de años. ¿Es posible dar vida a un mamut a partir de su genoma? La respuesta es que, con la tecnología disponible ahora, resultaría imposible siquiera pensar en regresar al mamut del mundo de las especies extintas.

El genoma no deja de ser sino un paquete de información. Para poder traducir esa información en un mamut vivo se necesitaría organizarla en cromosomas, para después insertar estos en el núcleo de un óvulo viable cuya maquinaria celular pudiera leer e interpretar la información. A continuación, habría que implantar el óvulo en un útero adecuado para el desarrollo de un feto de mamut. Suponiendo que la preñez llegara a buen término, aún habría que pensar en el nacimiento y crianza de un bebé mamut de algunas toneladas de peso. Cada uno de estos pasos es actualmente imposible. Para empezar, no tenemos siquiera idea del número de cromosomas que tenían las células de los mamuts. Como ha sugerido Svante Pääbo, del Instituto Max Planck de Antropología Evolutiva en Leipzig, a lo más a lo que podríamos aspirar con la tecnología existente sería a insertar algunos genes de mamut en células de elefantes modernos y clonar un elefante con algunos rasgos de mamut, como los largos colmillos, las pequeñas orejas o el pelambre rojizo.

En teoría, es posible que tarde o temprano se desarrollen las tecnologías necesarias para realmente clonar un mamut. Ese nivel de conocimiento, sin embargo, está aún muy lejos en el horizonte del futuro. El deseo de ver un mamut haciendo retumbar el piso de la tundra no será para las generaciones presentes sino un sueño.

La boa gigante del Paleoceno

[Esta nota fue publicada en La Jornada Michoacán el 2 de marzo de 2009. Se reproduce el texto íntegro sin ediciones y se añaden ilustraciones y notas]

Las serpientes, y en particular las de mayor tamaño, generan reacciones extremas entre las personas. La aversión que mucha gente tiene por los ofidios es ancestral y se refleja en relatos muy antiguos como el del demonio materializado en serpiente en los primeros pasajes del Génesis. En contraste, la gran fascinación que muchas otras personas sienten por las serpientes se manifiesta en historias como la de la serpiente emplumada de Mesoamérica.

Aunque las representaciones pictóricas de las serpientes muestran generalmente animales de tamaño considerable, la realidad es que la gran mayoría de las casi 3 mil especies son pequeñas. La más chica es la diminuta culebra de Barbados, de apenas unos 10 centímetros de longitud y muy pocas especies rebasan el metro de largo. En el otro extremo, algunas anacondas de Sudamérica y pitones de Asia alcanzan hasta 8 metros, aunque la talla promedio en estas especies es de unos 6 metros.

Reconstrucción de Titanoboa y su ambiente. Ilustración de Jason Bourque, Florida Museum of Natural History

En un número reciente de la revista Nature, un grupo de investigadores de Canadá, Estados Unidos y Panamá informó sobre el descubrimiento de los restos fósiles de una enorme serpiente de 13 metros de longitud. Se trata de una nueva especie, llamada Titanoboa por sus descubridores, que vivió al principio del Paleoceno, hace unos 60 millones de años, en lo que ahora es Colombia. Por el tamaño de las vértebras presentes en el material fósil, los investigadores pudieron estimar que la titánica boa debe haber medido alrededor de 12.8 metros y debe haber pesado unos 1,100 kilos. Como se encontró material de varios individuos, se piensa que estos datos de tamaño pueden considerarse como promedio y no como extremos.

Si la escena de una pitón de siete metros estrangulando y luego consumiendo un pequeño venado en alguna selva del sureste asiático es impresionante, tratemos de imaginarnos a una serpiente de casi el doble de largo buscando alguna presa en las selvas sudamericanas de hace 60 millones de años. Si el lector tuvo la mala fortuna de ver la película Anaconda, con Jennifer López, seguramente recordará las imágenes de una gigantesca serpiente acosando a un grupo de heroicos documentalistas del National Geographic. Pues bien, pensemos que hace 60 millones de años realmente existió una bestia de ese tamaño que seguramente sembró el pánico entre los animales que le servían de alimento en aquellas lejanas épocas.

Un aspecto interesante del hallazgo tiene que ver con la reconstrucción de ambientes terrestres pasados. Se sabe que el tamaño máximo de los animales poiquilotermos (cuya temperatura interna varía en función de la externa) depende de las condiciones ambientales. En particular, las serpientes más grandes pueden existir solamente en regiones tropicales porque su tasa metabólica sería insuficiente en zonas frías. Es por ello que las pitones y anacondas están restringidas actualmente a las selvas de Asia y Sudamérica. La temperatura media anual es el promedio de todos los valores medidos a lo largo de un año. En las zonas tropicales actuales, tal promedio es de alrededor de 25 a 27 °C, lo que permite la existencia de serpientes de hasta 7 u 8 metros.

Fósiles de Titanoboa en el Museo de Historia Natural de la Universidad de Florida

Usando un modelo matemático basado en el tamaño máximo de las serpientes en diferentes partes del mundo, los investigadores calcularon que para permitir la existencia de un ofidio de 13 metros de largo sería necesaria una temperatura media anual de entre 30 y 34 °C. Una implicación de estos cálculos es que la temperatura media del planeta era mucho más elevada hace 60 millones de años que lo que es hoy en día. De hecho, investigadores de otras disciplinas han sugerido que la atmósfera en esa época tenía una muy alta concentración de bióxido de carbono y otros gases de efecto de invernadero, lo que implicaría una temperatura mundial elevada. El descubrimiento de la boa gigante apoya estas especulaciones.

Otro aspecto interesante del hallazgo de la serpiente gigante tiene que ver con la extinción de los dinosaurios. Hay que recordar que este evento tuvo lugar hace 65.5 millones de años y desencadenó la extinción de prácticamente todas las especies de gran talla. La presencia de la boa gigante implica que apenas unos cuantos millones de años después existían condiciones adecuadas en la Tierra para la evolución de animales de gran talla. La reconstrucción del ambiente en el que debe haber existido Titanoboa (planicies costeras asociadas con grandes ríos y bosque tropical) y la fauna asociada indican que la boa gigante debe haber tenido hábitos de alimentación similares a las anacondas modernas. Incluso, los investigadores han especulado que la boa gigante se alimentaba de cocodrilos de gran tamaño.

La existencia de extensos bosques tropicales hace 60 millones de años nos habla por una parte de la capacidad de la naturaleza para regenerarse después de una catástrofe mundial como lo fue la extinción masiva de finales del Cretácico. Nos habla por otro lado de la fragilidad de estos ambientes y de los extraordinarios seres que los habitaban. La fascinante historia de la boa gigante nos da lecciones importantes para entender y conservar las selvas de hoy en día.


Notas agregadas el 5 de marzo de 2012
:
La referencia del artículo sobre Titanoboa es
Head, J.J. et al. 2009. Giant boid snake from the Palaeocene neotropics reveals hotter past equatorial temperatures. Nature 457:715-717.

Un artículo reciente en Science muestra el caso contrario al de la boa gigante: en el máximo de temperatura del Paleoceno-Eoceno (hace unos 56 millones de años), los caballos de la época alcanzaron su tamaño mínimo (unos tres kilos y medio). En los mamíferos, las temperaturas altas parecen favorecer tamaños corporales pequeños.
Secord, R. et al. 2012. Evolution of the eartliest horses driven by climate change in the Paleocene-Eocene thermal maximum. Science 335:959.